驅動藻類CO?濃縮機制的光合作用途徑

衣藻細胞中CCM供能網絡的機制

光合作用消耗的CO?是人為排放量的10倍,而微藻的CO?吸收量接近其中的一半。藻類依賴于Rubisco的催化位點濃縮CO?的機制(CCM)增強了CO?的固定,能夠進行更高效光合作用。雖然許多參與無機碳運輸和吸收的細胞成分已經被確定,但微藻如何逆熱力學梯度為CO?濃縮提供能量的機理仍然未知。本研究發(fā)現(xiàn)在綠藻萊茵衣藻中,分別依賴于PGRL1和Flav蛋白的環(huán)式電子傳遞和O?光還原所產生的葉綠體腔內低pH對CCM的功能至關重要。研究認為腔內質子作用于類囊體bestrophin樣轉運體的下游,將碳酸氫鹽轉化為CO?。研究進一步證實,從葉綠體到線粒體的電子傳遞可能通過供應ATP促進非類囊體無機碳轉運體的激活。本研究提出了葉綠體向CCM供能網絡,描述了藻類細胞如何將光合作用的能量分配到不同CCM過程,為將功能性藻類CCM轉移到植物中以提高作物生產力提供了依據(jù)。

衣藻細胞中CCM供能網絡的機制
衣藻細胞中CCM供能網絡的機制

原文鏈接:https://doi.org/10.1038/s41586-022-04662-9

Related Posts

Read More

?微藻是土壤重金屬污染的“綠色克星”與小麥生長的秘密盟友

微藻作為土壤重金屬污染的“綠色克星”與小麥生長的秘密盟友,正逐漸成為農業(yè)可持續(xù)發(fā)展的重要力量。在“鎘大米”等新聞引發(fā)公眾對食品安全和土壤污染問題的廣泛關注后,科學家們將目光投向了微藻這一古老而微小的生命體。微藻不僅能夠有效吸附和鈍化重金屬,還能通過固氮、釋放磷、分泌有機質等方式,為作物提供豐富的養(yǎng)分,從而提升土壤肥力和作物產量。…

Read More

?雨生紅球藻非運動細胞萌發(fā)與休眠轉換機制及氮素的調控作用 ??

?雨生紅球藻非運動細胞萌發(fā)與休眠轉換機制及氮素的調控作用 ??雨生紅球藻作為天然蝦青素的重要來源,因其合成的蝦青素具有超強抗氧化活性而具有極高的經濟價值。然而,其生長緩慢、培養(yǎng)周期長等問題制約了規(guī)?;a。調控紅色非運動細胞的萌發(fā)是提升培養(yǎng)效率的關鍵策略,但該過程的代謝適應機制尚未完全明確。本文基于現(xiàn)有研究,系統(tǒng)探討雨生紅球藻非運動細胞與運動細胞之間休眠-萌發(fā)轉換的機制,重點剖析氮素在這一轉換過程中的核心調控作用,旨在為雨生紅球藻的高效培養(yǎng)及產業(yè)化應用提供理論參考。…

來自寶島臺灣的喜訊,開物生醫(yī)施總團隊實施的工廠廢氣養(yǎng)藻系統(tǒng)方案取得巨大成功,5天收一次都來不及,3天OD到21,每次清洗好幾次,都是濃濃的藻。 Read More

小球藻培養(yǎng)基:大規(guī)模培養(yǎng)的關鍵與優(yōu)化 —— 從實驗室到產業(yè)化生產的核心要素

在小球藻的大規(guī)模培養(yǎng)過程中,培養(yǎng)基起著舉足輕重的作用。培養(yǎng)基猶如小球藻生長的 “土壤”,為其提供了生長、繁殖和代謝所需的各種營養(yǎng)物質和適宜環(huán)境。合適的培養(yǎng)基配方不僅能夠促進小球藻的快速生長,提高生物量和產量,還能對小球藻的細胞組成和代謝產物進行調控,滿足不同應用領域的特定需求。例如,在食品和飼料行業(yè),我們希望通過優(yōu)化培養(yǎng)基,提高小球藻的蛋白質含量;而在生物能源領域,則需要誘導小球藻積累更多的油脂,用于生產生物柴油。…